skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Doyle, Scott_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Plasmas interacting with liquid surfaces produce a complex interfacial layer where the local chemistry in the liquid is driven by fluxes from the gas phase of electrons, ions, photons, and neutral radicals. Typically, the liquid surface has at best mild curvature with the fluxes of impinging plasma species and applied electric field being nominally normal to the surface. With liquids such as water having a high dielectric constant, structuring of the liquid surface by producing a wavy surface enables local electric field enhancement due to polarization of the liquid, as well as producing regions of higher and lower advective gas flow across the surface. This structuring (or waviness) can naturally occur or can be achieved by mechanical agitation such as with acoustic transducers. Electric field enhancement at the peaks of the waves of the liquid produces local increases in sources of reactive species and incident plasma fluxes which may be advantageous for plasma driven solution electrochemistry (PDSE) applications. In this paper, results are discussed from a computational investigation of pulsed atmospheric pressure plasma jets onto structured water solutions containing AgNO3as may be used in PDSE for silver nanoparticle (NP) formation. The solution surface consists of standing wave patterns having wavelength and wave depth of hundreds of microns to 1 mm. The potential for structured liquid surfaces to facilitate spatially differentiated chemical selectivity and enhance NP synthesis in the context of PDSE is discussed. 
    more » « less
  2. Abstract Remote plasmas are used in semiconductor device manufacturing as sources of radicals for chamber cleaning and isotropic etching. In these applications, large fluxes of neutral radicals (e.g. F, O, Cl, H) are desired with there being negligible fluxes of potentially damaging ions and photons. One remote plasma source (RPS) design employs toroidal, transformer coupling using ferrite cores to dissociate high flows of moderately high pressure (up to several Torr) electronegative gases. In this paper, results are discussed from a computational investigation of moderate pressure, toroidal transformer coupled RPS sustained in Ar and Ar/NF3mixtures. Operation of the RPS in 1 Torr (133 Pa) of argon with a power of 1.0 kW at 0.5 MHz and a single core produces a continuous toroidal plasma loop with current continuity being maintained dominantly by conduction current. Operation with dual cores introduces azimuthal asymmetries with local maxima in plasma density. Current continuity is maintained by a mix of conduction and displacement current. Operation in NF3for the same conditions produces essentially complete NF3dissociation. Electron depletion as a result of dissociative attachment of NF3and NFxfragments significantly alters the discharge topology, confining the electron density to the downstream portion of the source where the NFxdensity has been lowered by this dissociation. 
    more » « less